Monatshefte für Chemie Chemical Monthly © Springer-Verlag 1998 Printed in Austria

Solid Supported Reactions and Reagents XIV [1]: Envirocat EPZG[®] as a Novel Catalyst for Selective Acetalization of Aldehydes and Ketones

Babasaheb P. Bandgar^{*} and Nandkumar B. Gaikwad

Organic Chemistry Research Laboratory, School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded-431602, India

Summary. Envirocat $EPZG^{(R)}$ is an efficient reusable catalyst for acetalization of aldehydes and ketones. The isolation of pure products in high yields by simple filtration and evaporation of the solvent is an important feature of this method.

Key words. Aldehydes and ketones; Envirocat EPZG[®]; Protection of carbonyl groups; Selective acetalization.

Festkörperunterstützte Reaktionen und Reagentien, 14. Mitt. [1]: Envirocat EPZG[®] als neuer Katalysator für die selektive Acetalisierung von Aldehyden und Ketonen

Zusammenfassung. Envirocat EPZG[®] ist ein effizienter, wiederverwendbarer Katalysator für die Acetalisierung von Aldehyden und Ketonen. Die Isolierung reiner Produkte durch einfache Filtration und Verdampfen des Lösungsmittels ist ein wesentliches Kennzeichen dieser Methode.

Introduction

The carbonyl group is one of the most versatile functional groups in organic chemistry, and a great deal of synthetic work has been dedicated to the protection of carbonyl compounds as acetals and thioacetals [2]. The most convenient and practical methods for the syntheses of acetals from aldehydes and ketones are to react carbonyl compounds with alcohols or diols in the presence of an appropriate acid catalyst with azeotropic removal of water [3]. A variety of methods have been reported for the acetalization of carbonyl compounds employing different reagents [4-10].

In recent years there has been a considerable growth of interest in the catalysis of organic reactions by inorganic reagents supported on high surface area inorganic materials [11]. Envirocat[®], a new family of supported reagents, provides a significant break-through in an environmentally friendly chemistry. The members of this

^{*} Corresponding author

group are capable of catalyzing *Friedel-Crafts* alkylations and acylations, sulfonylations, oxidations, and other related processes [12]. Envirocat[®] are non-toxic powders composed of iron trichloride (19.6%) supported on inert material (80.4%) which can be filtered off easily and may be reused several times before they are exhausted [12].

Envirocat $EPZG^{\mathbb{R}}$ is one of the solid supported acid catalysts which exhibits both *Bronsted* and *Lewis* acid characteristics [12]. We have reported the use of Envirocat $EPZG^{\mathbb{R}}$ as an efficient heterogenous catalyst for the synthesis of conjugated nitroolefins [13], chemoselective silvlation of alcohols [14], methoxymethylation of alcohols [15], and conversion of aldoximes into nitriles [16]. Recently, Envirocat $EPZG^{\mathbb{R}}$ has been used for the generation of ketones from their tosylhydrazones [17]. We now report a simple and efficient high yield method for the acetalization of aldehydes and ketones catalyzed by Envirocat $EPZG^{\mathbb{R}}$.

Results and Discussion

The results of acetalization (Scheme 1) are presented in Table 1. The work-up procedure is exceedingly simple and involves merely filtration. Envirocat EPZG[®] is recovered and reactivated for reuse by azeotropic distillation. This procedure of acetalization appears to be quite general and selective. Both aldehydes and ketones were smoothly converted into acetals in excellent yields. It was observed that Envirocat EPZG[®] catalyzes acetalization of some more reactive carbonyl compounds in the presence of less reactive or sterically hindered carbonyl compounds. For example, when a mixture of *o*-nitrobenzaldehyde (**1g**) and 3-methoxy-4-hydroxy-benzaldehyde (**1f**) was allowed to react with one equivalent of **2** and a catalytic amount of Envirocat EPZG[®] in toluene at reflux temperature for 3 h, a high yield (93%) of **3g** was obtained, whereas **1f** was recovered unchanged. Under similar experimental conditions, mixtures of **1c** and **1k**, **1m** and **1k**, or **1l** and **1o** were allowed to react with one equivalent of 2,2-dimethyl-1,3-propanediol and a catalytic amount of EPZG[®] in toluene under reflux for 3.5 h, 1.5 h, and 7 h,

	R^{1} R^{2}	C=O + HO HO		ne, Reflux	\rightarrow $R_2 C \sim 0 \times H_2 O$
		1 2			3
	R^1	<i>R</i> ²		R^1	<i>R</i> ²
a	Н	2-Furfuryl	i	Н	4-NO ₂ -C ₆ H ₄
b	Н	C_6H_5	j	Н	C ₆ H ₅ CH=CH
c	Н	4-Cl-C ₆ H ₄	k	CH_3	C_6H_5
d	Η	2,4-Cl ₂ -C ₆ H ₃	1	CH,	$4 - Cl - C_6 H_4$
e	Н	4-MeO-C ₆ H ₄	m		tetramethylene
f	Н	3-MeO,4-OH-C ₆ H ₃	n		pentamethylene
g	Н	$2-NO_2-C_6H_4$	0	C_6H_5	C_6H_5
h	Н	$3-NO_2^2-C_6^0H_4^4$		0 5	

Scheme 1

	Reaction times (h)	Yield (%)	m.p./b.p. (°C)	¹ H NMR δ (ppm)
3a	2.5	90	235 ^a	0.75 (s, 3H, CH ₃), 1.25 (s, 3H, CH ₃),
2 L	2	0.4	2 40 ^a	$3.65 (s, 4H, 2 \times OCH_2)$
3b	3	94	240 ^a	0.80 (s, 3H, CH ₃), 1.28 (s, 3H, CH ₃),
				$3.68 (s, 4H, 2 \times OCH_2), 5.60 (s, 1H, 4 \times OCH), 7.10 (m, 5H, 4 \times OCH)$
2.	2	00	227 ^a	ArCH), 7.10 (m, 5H, Ar- H)
3c	3	98	237 ^a	0.80 (s, 3H, CH ₃), 1.30 (s, 3H, CH ₃),
				$3.70 (s, 4H, 2 \times OCH_2), 5.37 (s, 1H, 4.5H)$
				ArCH), 7.23 (d, 2H, $J = 4.5$ Hz,
21	~	00	. 2508	Ar-H), 7.70 (d, 2H, $J = 4.5$ Hz, Ar-H)
3d	5	90	>250 ^a	0.70 (s, 3H, CH ₃), 1.33 (s, 3H, CH ₃),
				3.66 (s, 4H, $2 \times \text{OCH}_2$), 5.53 (s, 1H,
2	10	05	cob	ArCH), 7.43 (m, 3H, Ar-H)
3e	10	95	60^{b}	0.77 (s, 3H, CH ₃), 1.23 (s, 3H, CH ₃),
				$3.60 (s, 4H, 2 \times OCH_2), 3.70 (s, 3H, 0.000) = 5.22 (s, 1H, 0.0000) = 6.67 (s)$
				OCH ₃), 5.23 (s, 1H, ArCH), 6.67 (d,
				2H, J = 4 Hz, Ar-H, 7.33 (d, 2H, L)
7 £	20	04	80 ^b	J = 4 Hz, Ar-H)
3f	29	94	80	0.77 (s, 3H, CH ₃), 1.30 (s, 3H, CH ₃),
				$3.67 (s, 4H, 2 \times OCH_2), 3.90 (s, 1H, OCH)), 5.20 (s, 1H, ArCH), 7.00 (m)$
				OCH ₃), 5.30 (s, 1H, ArCH), 7.00 (m,
20	2	93	163 ^a	3H, Ar-H) 0.80 (s, 3H, CH ₃), 1.23 (s, 3H, CH ₃),
3g	2	95	105	$3.70 (s, 4H, 2 \times CH_2), 6.00 (s, 1H, 2.5)$
				ArCH), 7.63 (m, 4H, Ar-H)
3h	2.5	80	120 ^a	0.79 (s, 3H, CH ₃), 1.30 (s, 3H, CH ₃),
511	2.5	80	120	$3.70 (s, 4H, 2 \times OCH_2), 5.37 (s, 1H, 3.70)$
				ArCH), 7.55 (m, 4H, Ar-H)
3i	2	85	48 ^b	$0.80 (s, 3H, CH_3), 1.27 (s, 3H, CH_3),$
51	2	05	-10	$3.71 (s, 4H, 2 \times OCH_2), 5.39 (s, 1H, CH_3),$
				ArCH), 7.50 (m, 4H, Ar-H)
3j	3	97	45 ^b	$0.70 (s, 3H, CH_3), 1.22 (s, 3H, CH_3),$
-)	5)1	45	$3.69 (s, 4H, 2 \times OCH_2), 4.90 s, 1H,$
				J = 8 Hz, ArCH), 7.05 (dd, 1H,
				J = 16 Hz, J = 8 Hz, = CHCHO), 7.40 (d,
				J = 16 Hz, J = 0 Hz, = 0 Hz, = 0 Hz, J = 0 Hz, = 0 Hz
				Ar-H)
3k	8	95	148^{a}	0.78 (s, 3H, CH ₃), 1.25 (s, 3H, CH ₃),
~	U		110	$2.05 (s, 4H, Ar.CH_3)$
				2.05 (5, 111, 11.0113)

Table 1. Envirocat EPZG[®] catalyzed acetalizations of carbonyl compounds

^a b.p.; ^b m.p.

respectively, high yields of the cyclic acetals **3c**, **3m**, and **3l** were obtained (95, 80, 98%); **1k** and **1o** were recovered unchanged. In conclusion, Envirocat EPZG[®] has been found to be a useful, effective, and

In conclusion, Envirocat EPZG^(B) has been found to be a useful, effective, and selective heterogenous catalyst for the acetalization of aldehydes and ketones. This method is an alternative to the existing procedures of acetalization. Furthermore, it

722 B. P. Bandgar and N. B. Gaikwad: Selective Acetalizations with Envirocat EPZG[®]

is advantageous because of ease of separation, high yields, and recyclability of the catalyst.

Experimental

Envirocat EPZG[®] was obtained from Contract Chemicals, England, and activated 1 h prior to use by azeotropic distillation using a *Dean-Stark* apparatus.

General procedure

A mixture of the carbonyl compound (10 mmol), 2,2-dimethyl-1,3-propanediol (**2**, 10 mmol), and Envirocat EPZG[®] (100 mg) in anhydrous toluene was stirred under reflux for the specified time (Table 1). The water formed was removed azeotropically using a *Dean-Stark* apparatus. The reaction was monitored by TLC. After completion of the reaction, the mixture was filtered, and the catalyst was washed with dichloromethane (3×10 ml). The solvent was removed under reduced pressure to afford the product in almost pure form. All products were identified by their ¹H NMR spectra.

Acknowledgements

We thank Contract Chemicals, England for a generous gift of Envirocat EPZG[®].

References

- [1] Solid Supported Reactions and Reagents XIII: Bandgar BP, Kulkarni MM (1996) Ind J Heterocyclic Chem 6: 147
- [2] Green TW, Wuts PGM (1991) Protective Groups in Organic Synthesis, 2nd edn. Wiley, New York, p 178
- [3] Meskens FAJ (1981) Synthesis 5: 501
- [4] Taylor E, Chiang C, (1977) Synthesis 5: 467 and references cited therein
- [5] Sterzycki R (1979) Synthesis 7: 724
- [6] Olah GA, Narang SC, Meidar D, Salem GF (1981) Synthesis 3: 282
- [7] Yoshida J, Hasimoto J, Kawabata N (1981) Bull Chem Soc Jpn 54: 309
- [8] Chan TH, Brook MA, Chaly T (1983) Synthesis 2: 203 and references cited therein
- [9] Caputo R, Ferreri C, Palumbo G (1987) Synthesis 3: 386
- [10] Lee S, Lee S, Takata T, Endo T (1991) Synthesis 3: 368
- [11] Clark JH, Kybett AP, Macquarrie DJ (1992) Supported Reagents: Preparation Analysis and Applications. VCH, New York
- [12] Contract Chemicals, England (1994) Envirocats-Supported Reagents: Product Information
- [13] Bandgar BP, Zirange MB, Wadgaonkar PP (1996) Synlett 2: 149
- [14] Bandgar BP, Wadgaonkar P (1997) Synth Commun 27: 2069
- [15] Bandgar BP, Hajare CT, Wadgaonkar PP (1995) J Chem Res(S) 1: 90
- [16] Bandgar BP, Jagtap SR, Ghodeshwar SB, Wadgaonkar PP (1995) Synth Commun 25: 2993
- [17] Ballini R, Boscia G, Maggi R, Sartori G (1977) Synlett 8: 795

Received January 19, 1998. Accepted (revised) February 13, 1998